A Thematic Approach to User Similarity Built on Geosocial Check-ins

Abstract

Computing user similarity is key for personalized location-based recommender systems and geographic information retrieval. So far, most existing work has focused on structured or semi-structured data to establish such measures. In this work, we propose topic modeling to exploit sparse, unstructured data, e.g., tips and reviews, as an additional feature to compute user similarity. Our model employs diagnosticity weighting based on the entropy of topics in order to assess the role of commonalities and variabilities between similar users. Finally, we offer a validation technique and results using data from the location-based social network Foursquare.

Publication
In Geographic Information Science at the Heart of Europe (AGILE 2013)
Date
Links